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Abstract 

We present an algorithm to determine if a real polynomial is a sum of squares (of polyno- 
mials), and to find an explicit representation if it is a sum of squares. This algorithm uses the 
fact that a sum of squares representation of a real polynomial corresponds to a real, symmet- 
ric, positive semi-definite matrix whose entries satisfy certain linear equations. 0 1998 Elsevier 
Science B.V. All rights reserved. 
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1. Introduction 

We present an algorithm to determine if a real polynomial is a sum of squares (of 

polynomials), and to find an explicit representation if it is a sum of squares. This 

algorithm uses the fact that a sum of squares representation of a real polynomial 

corresponds to a real, symmetric, positive semi-definite matrix whose entries satisfy 

certain linear equations. 

2. Sums of squares and Gram matrices 

We fix n and use the following notation in R := &I,. . . ,x,1: For a = (al,. . , a,) E 

N& let xa denote x7’ . . . .x:. For m E No, set A,,, := {(a~, . . .,a,) E Nt ( CII + .. . + 
cc,, <_ m}. Then f E R of degree m can be written f = ~a_,,alxT. We say f is SOS 

if f is a sum of squares of elements in R. 
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Suppose f is SOS, say f is a sum of t squares in R, then f must have even degree, 

say 2m. Thus, f = Cf=,h’, where each hi has degree 5 m. Suppose (A,[ = k, then 

we order the elements of A,,, in some way: Am = {fli,...,Pk}. Set f:= (x”‘,...,x~~) 

and let A be the k x t matrix with ith column the coefficients of hi. Then the equation 

f = c hf can be written 

The symmetric k x k matrix B := AA T is sometimes called a Gram matrix of f 
(associated to the hi’s). Note that B is psd (= “positive semi-definite”), i.e., y.B.yT 2 0 

for all j = (yi,...,yk) E [Wk. 

The following theorem, in a different form, can be found in [4]. However, we include 

the theorem and its proof for the convenience of the reader. 

Theorem 1. Suppose f E R is of degree 2m and X is as above. Then f is a sum of 

squares in R iff there exists a real, symmetric, psd matrix B such that 

f =X.B.fTT. 

Given such a matrix B of rank t, then we can construct polynomials hl,. ., h, such 

that f = c hf and B is a Gram matrix off associated to the hi’s. 

Proof. If f = C h;? is SOS, then as above we take B = A . AT, where A is the matrix 

whose columns are the coefficients of the hi’s. 

Suppose there exists a real, symmetric, psd matrix B such that f = X . B ZT and 

rank B = t. Since B is real symmetric of rank t, there exists a real matrix V and a 

real diagonal matrix D = diag(dl,. ,dt,O,. . . ,O) such that B = V . D . VT and di # 0 

for all i. Since B is psd we have d, > 0 for all i. Then 

(*) f =x. V.D. VT.XT. 

Suppose V = (Vi,j), then for i = 1,. . . , t, set h, := fi c,“=, Vj,ix’l E R. It follows 

from (*) that f =hf+...+hf. U 

Thus, to find a representation of f as a sum of squares, we need only find a matrix 

B which satisfies the theorem. Further, if we can show that no such B exists, then we 

know that f is not a sum of squares in R. Note that if f = xa,x” and B = (bi,j) is 

a k x k symmetric matrix then by “term inspection”, f = 2. B .fT iff for all CI E AZ,, 

(**) c bi,j = a,. 

Bz+B,=a 

3. The algorithm 

Given f E R of degree 2m. 

1. Let B = (bi,j) be a symmetric matrix with variable entries. Solve the linear system 

that arises from f = X. B iYTT, i.e., solve the linear system defined by equations of 
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the form (**) above, with one equation for each M E hzm. Note that each variable 

bi,j appears in only one equation, hence the solution is found by setting all but one 

variable in each row equal to a parameter and solving for the remaining variable. Then 

the solution is given by B = Bo + JIB, +. ’ . + ,&Bl, where each Bi is a real symmetric 

k x k matrix and 21,. . . , ij are the parameters. In this case I = k(k + I)/2 - ~AZ~). 

Remark. In general, the size of the matrix B grows rapidly as the number of variables 

and the degree of the polynomial increases, since k = [A,/ = (“7). However, for 

a particular polynomial we can sometimes decrease the size of the Gram matrix by 

eliminating unnecessary elements of A,,,. For example, suppose x E AZ,,,, a = 2/l, and c( 

cannot be written in any other way as a sum of elements in A,. Then if the coefficient 

of tl in f is 0, we know XI cannot occur in any hi, cf. [3, Section 21 and [4, 3.71. 

2. We want to find values for the &‘s that make B = Bo + l,B, + .. . + A/B! 

psd. As is well known, B is psd iff all eigenvalues are nonnegative. Let F(y) = 

yk + bk_ I yk-’ + . . + bo be the characteristic polynomial of B. Note that each bi E 

R[i.], . . ,A,]. By Descarte’s rule of signs, which is exact for a polynomial with only 

real roots, F(y) has only nonnegative roots iff (- 1) (i+k)bi > 0 for all i = 0,. . , k - 1. 

Hence, we consider the semialgebraic set 

S := {(>_t,. ..,i.[) E R’ ( (-1) (i+k)bi(3.,, . . . ,A[) 2 0). 

Then f is SOS iff S is nonempty, and a point in S corresponds to a matrix satisfying 

the conditions of Theorem 1. 

Remark. There are several different algorithms for determining whether or not a semi- 

algebraic set is empty, for example, using quantifier elimination. Unfortunately, none 

of these algorithms are practical apart from “small” examples. For more on this topic, 

see e.g. [ 1, 2, 5, 61. 

3. Given a matrix B = (bi,j) which satisfies the conditions of Theorem 1, then we 

use the procedure in the proof of the theorem to find a representation of f as a sum 

of squares. 

Example 1. Let f = x2y2 +x2 + y2 + 1, then f is visibly a sum of squares. We want 

to find all possible representations of f as a sum of squares. Note that by the remark 

above, if f = c hf then the only monomials that can occur in the hi’s are xy, X, y, 1. 

So set PI =(l,l), P2 =(l,O), P3 =(O,l), and /?4 = (0,O). Then the linear system in 

step 1 of the algorithm is 

bl,l = 1, 2b1,z = 0, 2bt,3 = 0, 261,4 +2b2,3 = 0, 

b2.2 = 1, 2b2,4 = 0, 

b3.3 = 1, 2b3,4 = 0, 

b4,4 = 1. 
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Thus, the general form of a Gram matrix for f is 

The characteristic polynomial of B is 

y4 - 4y3 + (6 - 21,2)y2 + (4;: - 4)y + (A4 - 2i.2 + 1), 

thus B is psd iff - 1 5 A 5 1. Note that rank B = 2 if A = fl, otherwise rank B = 4. 

Hence, f can be written as a sum of 2 or 4 squares. 

WehaveB=V~D~VT,whereD=diag(l,l,1-12,1-~2)and 

10 00 

A 0 0 1 

This yields 

f = (xy + n>2 + (X - i.y)2 + (&-zy)2 + (JC-?)! 

Note that ,X = 0 yields the original representation of f as a sum of 4 squares. 

Example 2. Let f (x, y,z) = x4 + 2x2y2 +x32 + z4. A Gram matrix for f would be of 

the form 

10 2 1 

02 0 0 

IO 0 1 

In this case, S C{-8 - 42 + 4k3 2 0, -8 - 41 2 0} = 0. Hence, f is not SOS. 

Example 3. Let f(x, y, z) = x6 +4x3 y2z + y6 + 2y4z2 + y2z4 + 4z6. In this case the only 

exponents that can occur in the hi’s are {(3,0,0),(0,3,0),(0,2,1),(0,1,2), (0,0,3)}. 

We get 

as the general form of a Gram matrix. 

The corresponding semialgebraic set is S = { -2r - 2t + 9 2 0, -r2 + 4rt - 14r - 2s’ 
-t2-16t+25 2 0, 2r3-7r2+2rs2+24rt-30r+2s2t-10s2+2t3-3t2-34t+19 2 0, 
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1Or3 + r2t2 - IOr’ - 2rs2t + 4rs2 + 36rt - 26r + s4 + 6s2t - 10s2 + 4t3 - 3t2 - 4t - 6 > 

0, 8r3+r2t2+8r2+-2rs2t+2rs2+l6rt-8r+s4-4s2t-2~2+2t3-t2+16t-8 2 0). 

If we set s = 0, we (-1, 0, E S, setting s 0 and = -2 see 

(-2,0, E S. particular, S nonempty and f is sum of 

Using (-l,O,O), 

0 2 o- 

0 0 -1 

B=2 0 0 0. 

-1 0 0 

-0 0 0 

Note that B = so this f as sum of squares. In case we 

f = + 2y%92 (y3 - + (223)2. 

Using (-2, 0, -3/2), 

-1 0 2 0 o- 

0 1 0 -2 0 

B=2 0 6 0 -312 

0 -2 0 4 0 

,o 0 -312 0 4 _ 

Note rank B = 4. Proceeding as before we get 

f = (X3 + 2y2z)2 + (J? - 2yz2)2 + (Jzy% - 3&/423)2 + (J23/823)2. 

Remark. Let (K, 5) be any ordered field with real closure R, and suppose f E 
K[xl,. . . ,x,,]. Then we can easily extend the algorithm to decide whether or not f 

is a sum of squares in R[x,, . . . ,x,]. 
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